
Computational Geometry

Basics of Vectors and Vector Maths
Scalar – normal number
Vector – consists of components A = ‹Ax , Ay , Az›
 aa

Magnitude of vector A (length of line from origin to A) |A| = √ Ax
2

 + Ay
2

 + Az
2

Vector addition and subtraction work on individual components:
A+B = ‹Ax+Bx , Ay+By , Az+Bz› A−B = ‹Ax−Bx , Ay−By , Az−Bz›

Vector multiplication has two forms:
Dot product: (gives a scalar result)
A·B = Ax×Bx + Ay×By + Az×Bz
If θ is the angle between A and B: A·B = |A| × |B| × cos θ

Cross Product:
A×B = ‹Ay×Bz−By×Az , Az×Bx−Bz×Ax , Ax×By−Bx×Ay›

A×B = │
A×B = │
A×B = │
Gives a v
by vector

Vector Pr
Useful ba
 A
 A
 ar

When wo
compone
In 2D, wi
 A
 A
 A

This can

Other for
 D

 D

Standard

• G
U
D
on
 │
 │
i j k

 │
Ax Ay Az
Bx By Bz

ector result orthogonal to vectors A and B (perpendicular to the plane defined
s A and B). Direction of the result can be determined by the right-hand rule.

operties and Simple Geometric Problems
sic properties:
·B = 0 ↔ A┴B
×B = 0 ↔ A║B
ea ∆ABC = ½ |(A−B)×(A−C)|
rking in 2D, we let Az = Bz = 0. Under such conditions, the sign of the Z
nt of A×B gives us information on the orientation of A and B.
th a clockwise angle θ between A and B when positioned head-to-tail:
×B > 0 ↔ θ < 180° (left-hand turn)

×B = 0 ↔ θ = 180° (corresponds with basic properties)
×B < 0 ↔ θ > 180° (right-hand turn)
also be used to determine which side of a line a point is on.
mulae:
istance from point D to line AB

|(A−D)×(A−B)| ÷ |A−B|
istance from point D to plane ABC

|((A−B)×(A−C)) · (P−A)| ÷ |(A−B)×(A−C)|

problems:
iven points A, B, C and D, determine if line segments AB and CD intersect –
se cross products to check that A and B are on either side of CD and that C and
 are on either side of AB. If it is in 3D, you must also check that all 4 points lie
 the same plane.

• Check whether a point A lies inside a convex polygon – Average the vertices of
the polygon to find a point B inside it. Then for every edge of the polygon, check
that A and B are on the same side of that edge (cross products).

• Check whether a point A lies inside a concave polygon – Use a technique called
ray casting: draw a line in a random direction from A to the extent of your
coordinate system and counter the number of times it intersects with edges of the
polygon. An odd number of intersections means A lies inside, an even number
means it lies outside.

Applications to More Complex Problems

• Create a simple closed path for a given set of points – Find the anchor point A
with the lowest y-coordinate (break ties by lowest x-coordinate). Sort all other
points according to the angle from point A to that point. The simple closed path is
the path starting at A and visiting the other vertices in the sorted order.

• Find the convex hull of a given set of points – Start by finding the order of points
in the simple closed path for the set. Add the anchor point and the first of the
sorted points to the hull. Thereafter, iterate through the sorted points in order. If
the current point forms a left-hand turn with the last two points of the convex hull,
it can be added to the hull. If it forms a right-hand turn, points must be removed
from the end of the convex hull until the current point does form a left-hand turn
with the last two and the current point is added to the hull. The cross product can
be used to determine which way it is turning.

Implementation
Considerations:

1. Make provision for border cases, such as multiple collinear points, points falling
on lines or lines passing through vertices.

2. When working with real numbers, never check for exact equality. Rather check a
value to within a certain range (called tolerance).

Using the complex number class:
 Variables declared and used as such:

 complex<type> point1,point2; //type can be any number type eg. int or double
 real(point1) = 0; //assignment to the real part
 imag(point1) = 0; //assignment to the imaginary part
 real(point2) = imag(point1)+2;

 For complex numbers (a + bi) and (c + di):
 (a + bi)(c + di) = (ac − bd) + (ad + bc)i
 or (a − bi)(c + di) = (ac + bd) + (ad − bc)i

From which we can see that the real and imaginary components correspond to the
dot and cross products of two vectors ‹a , -b , 0› and ‹c , d , 0›.

 The conjugate of (a + bi) is (a − bi).
Therefore we can easily write the dot and cross products in terms of the
components of the product of two complex numbers.

 dot_product = real(conj(point1) * point2);
 cross_product = imag(conj(point1) * point2);

